

广东省农业科学院果树研究所 INSTITUTE OF FRUIT TREE RESEARCH GUANGDONG ACADEMY OF AGRICULTURAL SCIENCES

地址 Add: 广州五山 Wushan, Guangzhou 电话 Tel: 38765869(o) 邮编 Pos: 510640,P.R.China 传真 Fax: 38765626

Research on Fusarium Wilt of Banana and its Management in China

Chun-Yu Li, Gan-jun Yi, Ji-wu Zeng, and Gui-ming Deng Guangdong Academy of Agricultural Sciences, China

Outlines

- 1. Symptoms
- 2. Threat or impacts on Chinese Banana industry
- 3. The diveristy of the Pathogens
- 4. Virulence of Foc TR4
- 5. Prevention measures
- 6. Developping Control measures
- 7. Conclusions
- 8. Acknowledgments

Fusarium Wilt of banana in Asia

Fusarium Wilt of Banana in China

Incidence Area in China

Producing center is moving from Guangdong province into Guangxi

Reasons for Fusarium wilt epidemics

- 1. Large scale monoculture of bananas
- 2. Small-scale farming by individual owners
- 3. Irregular production of tissue clture plantlets
- 4. River pollution and farming operations
- 5. Disregard of quarantine regulations
- 6. Movement of plants, people and equipment

Fusarium oxysporum f.sp. cubense

Abb. 57. Fusarium oxysporum v. cubense. Vergr. 1000. a. Makrokonidien der längeren pionnotalen Entwicklungsstufe; b, c, d. Makrokonidien der gewöhnlichen sporodochialen Entwicklungsstufe auf verschiedenen Nährböden; e. Chlamydosporen; f. Konidienträger

Races in Foc

- 'Gros Michel' (AAA), 'Silk' (AAB), 'Pome' (AAB), 'Pisang Awak' (ABB), *Musa textilis*
- Race 2 •• Blue
- 'Bluggoe' (ABB)
- Race 3
- Race 4 III
 - ≽"tropical"
 - ➤"sub-tropical"

Heliconia species

Cavendish (AAA), 'Pisang Mas' (AA), 'Pisang Berangen' (AAA), AAB plantains, plus cultivars susceptible to race 1 and race 2

Number	VCG	Race	Host or cultivar	Origin
1	120	Subtropical Race 4	Cavendish	South Africa
2	121	Subtropical Race 4	Cavendish	China-Taiwan
3	122	Subtropical Race 4	Cavendish	Philippines
4	123	Race 1/2	Latundan	Philippines
5	124	Race 1/2	Lady finger	Australia
6	125	Race 1/2	Lady finger	Australia
7	126	Subtropical Race 4	Pisang Rubus	Indonesia
8	128	Race 2	Bluggoe	Australia
9	129	Subtropical Race 4	Lady finger	Australia
10	1210	Subtropical Race 4	Apple	United States
11	1211	Subtropical Race 4	SH3142	Australia
12	1212	Race 1/2	Ney poovan	Tanzania
13	1213	Tropical Race 4	Pisang Berangan	Indonesia
14	1214	Not included in Race identity system	Harare	Malawi
15	1215	Subtropical Race 4	Gros Michel	Costa Rica
16	1216	Tropical Race 4	Cavendish	Indonesia
17	1217	Race 1	Pisang Rastali	Malaysia
18	1218	Race 1	Pisang Siem	Indonesia
19	1219	Subtropical Race 4	Pisang Raja Sereh	Indone sia
20	1220	Race 4	Cavendish	Australia
21	1221	Race 1	Pisang Awak	Thailand
22	1222	Race 1	Pisang Awak Legor	Thailand
23	1223	Not included in Race identity system	Pisang Keling	Thailand
24	1224	Not included in Race identity system	Pisang Ambon	Thailand
25	Dajiao	Not included in Race identity system	Plantain	China Mainlan

Diversity and distrubution of Foc In China

Cooperation: Dr Altus Viljoen Stellenbosh Univeristy

Chunyu Li and Ganjun Yi. 2014. Fungal Genomics and Biology

Evolution of Foc worldwide

1. Genome re-sequencing

(1) 56 Strains: From Dr Altus Viljoen, Randy and ourself

- (2) 4 Races, 24VCGs and covering 35 contries worldwidely
- 2. Co-operation :

Laboratory of fungal comparative genomics, Umass Amherst, USA

Altus Viljoen

Randy

Lijun Ma

Information of the resequnced *Foc* **isolates**

. Strains.	Host	Geological locations.	.1	Strains .	Host	Geological locations.	
TR4.			4,	194-VCG01217-L	Pisang Siem -	Indonesia -	
1 CAV2318-V0	G0121-T, Namwa (AAB),	Kuosin E. 2K Taiwan	5.5	195-VCG01219-L ₁	Pisang Ambon.	Indonesia.	
2. CAV300-VC	G01213-L. Valery	Southeast Sumstra Indonesia .	6 .1	618-VCG0122-P.1	Cavendish.	Philippines.	
3. 811-VCC012	13.1. Picang Batan	Sumatra Indonesia	7.1	623-VCG01220-A.1	Williams.	Camarvon. Western Australia.	
4 1216 VCC012	154.1 Fisang Datan.1	n Heinen China	8.1	788-VCG01210-C.1	Gros Michel.	FHIA Villa Clara, Cuba.,	
5 604 VCC012	14 M Discon Pairs	MARDI Salar and Malausia	9.5	847-VCG01219-I.1	Pisang Ambon.	Indonesia	
5.1 004-VCG012	10-ML Pisang Kaja.	Currendore Chine	10.1	848-VCG01219-I.1	Pisang Garing.	Indonesia.	
6.1 /89-VCG012	15/10-C., Cavendish, Brizilia	n Guangdong,China.	11.1	871-VCG01217-M.1	Pisang Rastali.	Malavsia.	
SIR4.			12.1	939-VCG0123-T.1	Kluai Namwa.	Thailand.	
1., 105-VCG012	0-S., Cavendish.,	Kiepersol, South Africa.	13.1	967-VCG0124/5-P.1	Latundan.	Philippines.	
2.1 286-VCG012	0-A., Lady finger.,	Moorina, QLD, Australia.	14.1	1210-VCG01210-C.1	Gros Michel.	Sto. Domingo. Villa Clara.	
3., 612DJ12-VC	G01215-C., Gros Michel.,	Costa Rica.	15.5	1214-VCG01214-M.1	Harare.	Misuku. Karonga. Malawi.,	
4.1 1089-VCG01	29-A.1 Lady finger.1	Cooloolabin, QLD,Austrilia.	16.1	1217-1-VCG01217-M.1	Pisang Rastali.	Kg. Taboh Naning Negri	
5.1 1211-VCG01	211-A., SH3142.,	Queensland,Australia.	17.1	1217-2-VCG01217-M.1	Pisang Rastali.	Kota. Nezri Sembilan.	
6.1 1215-VCG01	215-N., Isolona, Costa Ric	a., Onne, Nigeria.	18.1	1219-VCG01219-L1	Pisang raia garing.	Cibinons Collection. Java.	
7.1 GD19-VCG0	120/15-C., Cavendish,Brizilia	n Guangdong, China,	19.5	1223-VCG0123-P.1	Latundan.	Philippines.	
8.1 45-VCG0120	-B., Pacvan.,	Bahia, Brazil.	20.1	1223-VCG0123-T.1	Kluai nam wa sai	Smoeng Hwv 1269. Chiang	
RACE2.1			21.1	1224-VCG0124-H.1	Bluggoe.	Honduras.	
1., JB2013-VCG	0128-V., Chuoi tay cao (AA	AB)., Van Giang town, Van giang	22.1	1983-VCG0123-T.1	Pisang Awak.	Taiwan.1	
2.1 128-VCG012	8-A. Bluggoe.	South johnstone, Queensland,	23.1	2226-VCG01221-T.1	Kluai nam wa.	North of Chiang Rai. Hwv 1.	
nonpathogenicity-i	solates.		24.1	2260-VCG124-J.1	Tetraploid 1242.1	Bodles, Jamaica.	
1., JB255-S.,	.1	Kiepersol, South Africa.	25.1	2400-VCG1220-A.1	Williams.	Camarvon. West Australia.	
2.1 JB553-S.1	.1	Kiepersol, South Africa.	26.1	36115JD16-VCG01224-M.	Pisang Ambon.	Kuching. Seman Matang.	
Diiao Isolates.			27.1	GD01-VCG01220-C.1	Pisang Awak.	Guangdong. China.	
1, DJ0115-C.	Dajiao.	Dongguan, China,	28.1	HN05-VCG0123-C.1	Gros Michel.	Hainan.	
2 DI02-C	Daiiao y	Dongenan China	29.1	JB189-VCG01214-M.	Harare.	Misuku hills. Karonga.	
RACEL.			30.1	JB626-VCG0124/5-M.1	Harare.	Chitipa, Karonga, Malawi,	
1. 122.VCC	172. D. Saba	Dhilipping	31.1	GX05-VCG01221-C.1	Pisang Awak.	Guanexi.China.	
2 187 VCC		Florida USA	32.1	JB785-VCG0126-C.1	Pisang Awak.	Guangdong.China.	
2 100 1000	1210-0.1 Apple.1	Tanguage Station Tanania	33.1	1218-VCG01218-L	Pisang Siem.	Indonesia.	
5.1 100-VCG	1212-1.1 INEV POOVS	m., renguero Station, ranzama,	34.1	998-VCG01222-U.1	Kiania.	Uganda.	

35.1 941-VCG0125-T.1

Kluai Namwa.1

Thailand.

Quality of the data, and results of assembled contigs

Staria	MAT	Raw Reads	Raw Base (Gb)	Mapping reads	<u>Contigs</u>	N50	SNPs		Genome size (Mb)			000/	0204	
Strains							Total	Core	LS	Total	Core	LS	Q20(%)	Q30(%)
TR4														
CAV2318-VCG0121	1	17932515	3.62	16797552	582	261394	97996	89632	8364	45.21	42.14	3.07	96.76	90.38
CAV300-VCG01213	1	7761474	1.55	7529068	721	309890	4534	1245	3289	46.44	42.03	4.42	93.3	91.49
811-VCG01213	1	19178728	3.87	30283950	721	309890	5223	1729	3494	46.47	42.13	4.34	98.18	93.84
1216-VCG01216	1	13454667	2.72	21721752	721	298116	5719	1739	3980	47.41	41.77	5.64	98.26	94.13
604-VCG01216	1	10546237	2.11	3351182	999	203352	13485	3986	9499	46.00	41.69	4.31	92.82	90.43
789-VCG01213/16	1	16337447	3.3	23838167	742	258654	4947	1410	3537	45.69	41.55	4.14	96.68	90.24
STR4		*******	*********			~		^			*	*		
105-VCG0120	2	16704459	3.37	26753840	686	303437	267139	239355	27784	45.02	42.88	2.14	98.21	93.97
286-VCG0120	2	14721588	2.94	13494085	854	235889	257854	231501	26353	44.6	41.17	3.43	92.49	79.75
612DJ12-VCG01215		19250024	3.89	19808024	798	257998	328457	277859	50598	43.5	41.09	2.41	96.87	90.99
1089-VCG0129		18959312	3.83	23042389	817	296741	283068	252371	30697	44.1	42	2.1	98.23	94.05
1211-VCG01211	2	13849274	2.8	16506753	747	354257	265323	241206	24117	45.5	42.49	2.6	98.41	94.57
1215-VCG01215	2	13813089	2.79	17987339	814	293180	256678	229885	26793	44.28	41.90	2.38	98.39	94.72
GD19-VCG0120/15	1	15675179	3.17	22709385	821	378875	757096	714805	42291	44.26	40.72	3.55	98.3	94.27
45-VCG0120	2	15088942	3.05	18362627	742	301313	269018	239927	29091	47.97	42.21	5.76	98.22	94
RACE2														
JB2013-VCG0128		15405625	3.11	18608584	826	314715	857592	766754	90838	42.6	38.93	3.67	96.71	90.22

Evolution of Foc TR4, Foc STR4 and Race 1

Phylogeny of re-sequencing isolates within 50 conserved genes

Phylogeny of Foc basing on genomic SNP

Virulence

Infection process

Mycotoxin

Effectors

the whole invasion process of Foc TR4

Invasion types

Invasion sites

Research on Mycotoxin

Chunyu Li, Ganjun Yi. 2013. PLOS ONE^{Time (h)}

Changes in host metabolic pathways caused by BEA

Down-regulated pathways

Changes in host metabolic pathways caused by FA

Statistics of Pathway Enrichment Ubiquitin mediated proteolysis Tryptophan metabolism Taurine and hypotaurine metabolism -Stilbenoid, diarylheptanoid and gingerol biosynthesis -Starch and sucrose metabolism -Sphingolipid metabolism -RNA transport -Porphyrin and chlorophyll metabolism · qvalue Plant hormone signal transduction -Plant-pathogen interaction Phosphatidylinositol signaling system -Phagosome -Nitrogen metabolism mRNA surveillance pathway Inositol phosphate metabolism -• 20 Flavonoid biosynthesis -• 40 Fatty acid elongation 60 DNA replication -Degradation of aromatic compounds -Cytoskeletal regulation by Rho GTPase Circadian rhythm - plant -Carotenoid biosynthesis C5-Branched dibasic acid metabolism -Amino sugar and nucleotide sugar metabolism ABC transporters -0.25 0.50 0.75 Rich factor

Down-regulated pathways

Pathogencity of BEA and FA Knockout mutant

Inoculation test on banana

Changes of the BEA and FA biosynthesis in the mutants

编 号	菌株名称	BEA 合成量 (µg/g)	F A 合成量 (μg/g)	*发病率(%)
1	BEA(-)	420	60.3	35.5 ^d
2	Foc TR4	2040	57.2	100ª
3	BEA(-)	380	55.2	19.5°
4	FA(-)	1922	<0.05	60.6 ^b
5	FA(-)	2036	<0.05	44.2°
6	FA(-)	1899	<0.05	57.5 ^b
7	FA(-)	1945	<0.05	45.3°
8	FA Revertant	2122	44.8	91.5ª
9	BEA Revertant	2012	58.3	100ª

Research on Foc TR4 Effectors

Mining the Effectors expressing during invasion by RNAseq

Expressing the Effectors from *Foc* TR4 LS Region and highly expressing during invasion

Disease index statistical method

Disease index : $DI = [(N_{1-5} \times S_{1-5})/(N \times S)] \times 100\%$ DI = 0 No virulence DI = 1%-25% Weak virulence DI = 26-50% Moderate virulence DI = 51%-75% Strong virulence DI = 76%-100% Super virulence

Prevention Methods

- 1. Pre-collecting the local banana germplasm
- 2. Forbiding the means and source of introduction
- Restriction or quarantine of the foreign banana plantlets
- ◆ Labor's movements
- 3. Launch of an awareness campaign
- 4. Introduce on-farm prevention and sanitation practices
- Controlling water especially the irrigation
- ◆ One-gate-banana-plantation
- ◆ Sanitation of the tools and shoes at the gate

Eradication methods

- 1. Identification of the disease center;
- 2. Sanitation of the infected soil and plants with high concentration of fungicides or Quick Lime;
- 3. Killing the diseased plants with the mixture of glyphosate and carbendazim, then burn it;
- 4. Or Keeping the diseased plant in its place and don't step into the infected area.

Integrative Control Measures

- 1. Basing on resistant or tolerant varieties
- Reducing fungicide application
- ◆ Facing the threat from the pathogen's evolution
- 2. Designing a good banana plantation
- Restricting the movement of personnel
- Cutting off the transmission routs, such tools, shoes and etc
- 3. Preparing the Banana Plantlets free of Foc
- 4. Water treatments: chlorine dioxide, Lime nitrogen, Bacillus subtilis
- 5. Soil management.

PH value, Microbes, organic matters and etc

Earlier Screening Method

Susceptible cultivars

Highly resistant cultivars

The effect of root exudates on spore germination

1. Musa ABB cv `Dongguan Dajiao`; 2. Musa ABB cv `Zhongshan Dajiao`; 3. Musa AA cv `Haigong`; 4. Musa AAA Cavendish cv `Wilt-resistant #1`; 5. Musa AAA Cavendish cv `Brazilian`; 6. Musa AAA Cavendish cv `Wilt-resistant #5`; 7. Musa ABB Pisang awak cv `Guangfen #2`; 8. Musa AAA Cavendish cv `Dafeng #2`; 9. Musa ABB Pisang awak cv `Guangfen #1`. The germination of differed significantly among the cultivars (χ 2, df=8, p<0.0001).

The effect of root exudates on spore germination

Musa ABB cv `Dongguan Dajiao` Musa AAA Cavendish cv `Wilt-resistant #5` Musa AAA Cavendish cv `Brazilian`

Musa AAA Cavendish cv `Brazilian`

Musa ABB Pisang awak cv `Guangfen #1`

Musa AAA Cavendish cv `Dafeng #2`

Biology control

Fermentation the banana Pesoudostem with biological strains

Bioassay in Greenhouse

Chinese Leek control Fusarium Wilt of Banana

The extract affects Foc TR4 mycelial growth

The extract deformed Foc TR4 Mycelium

The extract killed Foc TR4 spores

- 1. Foc TR4 spread to all of the banana production area in China
- 2. Foc is evolving rapidly, and is a threat for the world banana industry
- 3. Effectors and mycotoxins are the virulence factors of Foc TR4
- 4. Integrative Control Measures basing on the resistant or tolerant varieties, and other methods including biology control, rotation should be adopted

Acknowledgments

• Group members

- 1. Dr Ganjun Yi
- 2. Dr Yuerong Wei
- 3. Dr Chunhua Hu
- 4. Dr Cunwu Zuo
- 5. Dr Guiming Deng
- 6. Dr Qiaosong Yang
- 7. Dr Ou Sheng
- 8. Dr Ruibin Kuang
- 9. Dr Biswas Monash
- 10. Dr Huijun Zhao

Collaborations

- 1. Fungal Comparative Genomics Lab of Umass Amherst
- Dr Lijun Ma and Group members
- 2. Department of plant pathology Stellenbosh Univeristy South Africa Dr Altus and Group members

