β-Cryptoxanthin prevents lifestyle-related diseases?

Findings from the recent nutritional epidemiologic survey -

Naoko KOZAI, Tatsushi OGATA and Minoru SUGIURA

Fruit production in Japan

In Japan...

Japanese fruit is very sweet

'Fruit is high-calorie food!'

Fruit contains much fructose

'High intake of fruit causes hyperlipidemia or diabetes!'

Does high intake of fruit cause obesity, hyperlipidemia, or diabetes?

'Does high intake of fruit cause obesity, hyperlipidemia, or diabetes?'

To test this hypothesis, we undertook the simple questionnaire survey.

Subjects:

General consumer who lives in the area with one of the highest Japanese mandarin consumption levels in Japan.

Questions:

Age, sex, height, weight, frequency of mandarin eating (in season), and the history of disorders.

A total of 6,049 responses were obtained.

(2,118 male and 3,931 females)

Japanese mandarin eater

Frequency of mandarin intake (in season, Oct - Feb)

I : Rarely eat (2.7%)

Ⅲ:1-3 fruits daily (53.3%)

II: Less than 3 fruits / one week (29.7%)

IV: More than 4 fruits daily (14.3%)

Results from the self-administered questionnaire survey

There were no relationship between mandarin intake and hyperlipidemia or obesity

Results from the self-administered questionnaire survey

Low prevalence of lifestyle-related disease of big mandarin eater

What ingredients are contained in Japanese Mandarin orange?

Ingredients

- Carbohydrate (Glucose, Sucrose, Fructose)
- Vitamins (Vitamin C, B₁, B₂, Folic acid)

New functional food factor?

- Citric acid
- Carotenoids (β-Cryptoxanthin, β-Cârotene)
- Minerals (Potassium, calcium, iron)
- Fiber (soluble, insoluble)
- Flavonoids (Hesperidin, Naringin)
- Limonoids (Limonin, Nomilin)
- Odorous constituents (D-Limonene, Linalool)

Serum \(\beta\)-cryptoxanthin level greatly increased according to an increase of Japanese Mandarin intake

Sugiura et al. *J Health Sci* 2002; 48: 350-353. Sugiura et al. *J Nutr Sci Vitaminol* 2004; 50: 196-202.

β-cryptoxanthin with the risk of lifestyle-related diseases

Recent nutritional epidemiologic findings

Nutritional Epidemiologic Survey: Mikkabi Study

Population

The study utilized data derived from health examination of inhabitants aged from 30 to 70 years performed in the town of Mikkabi in Shizuoka Prefecture, Japan.

Research Schedule

2003 Baseline survey (Cohort 1) 886 participants

2004 Follow-up survey

2005 Baseline survey (Cohort 2) 701 participants

2006 Cohort 1 survey

2007 Follow-up survey

2008 Cohort 2 survey

2013 Cohort 1 survey

2015 Cohort 2 survey

Cohort 1

Diabetes, Atherosclerosis, Liver dysfunction survey

Cohort 2

Osteoporosis, Metabolic syndrome survey

From the Mikkabi Study...

Serum β-cryptoxanthin with lower risk for.....

Liver dysfunction

Alcohol-related increased serum gamma-GTP Hyperglycemia-related increased serum ALT **Publications**

J Epidemiol 15: 180-186 (2005) Diabetes Res Clin Pract

71: 82-91 (2006)

Insulin resistance

HOMA-IR estimated Insulin resistance

J Epidemiol 16: 71-78 (2006)

Arteriosclerosis

Brachial-ankle pulse wave velocity

Metabolic syndrome

Interaction of smoking

Atherosclerosis

184: 363-369 (2006)

Br J Nutr

100: 1297-1306 (2008)

Osteoporosis

Bone mineral density at radius

Oxidative stress

Induced by smoking and drinking

Osteoporosis Int 19: 211-219 (2008) Osteoporosis Int 22: 143-152 (2011)

PLoS ONE

7: e52643 (2012)

Br J Nutr 102: 1211-1219 (2009)

β-cryptoxanthin with the risk for liver dysfunction

High β-cryptoxanthin is inversely associated with serum γ-GTP in alcohol drinkers

Excessive Alcohol Intake

Generation of Free radical Species

Liver Cell Damage

Daily ethanol intake

Serum ganma-GTP: gamma-glutamyltransferase Specific indicator for alcohol liver disease

Alcohol 25 g = Whisky 80 mL

Confounding factors adjusted mean of serum y-GTP

Confounding factors:

Age, BMI, total energy intake, smoking habits, etc.

These factors associate with serum γ-GTP level.

Tertile of serum β-cryptoxanthin levels

Sugiura et al. J Epidemiol. 2005; 15: 180-186.

β-cryptoxanthin may act as a suppressor against liver cell damage and may inhibit progression of liver dysfunction induced by alcohol.

High β-cryptoxanthin is inversely associated with serum aminotransferases in hyperglycemic subject

IFG: Impaired fasting glucose

Alanine aminotransferase (ALT): Marker of liver dysfunction

Confounding factors adjusted mean of serum ALT

Tertile of serum beta-cryptoxanthin levels

Sugiura et al. *Diabetes Research and Clinical Practice* 2006; 71: 82-91.

β-cryptoxanthin may act as a suppressor against liver cell damage in the earlier pathogenesis of liver dysfunction induced by hyperglycemia.

β-cryptoxanthin with the risk for Osteoporosis

Serum β-cryptoxanthin (mandarin intake) with the risk for osteoporosis

Sugiura et al. *Osteoporosis Int* 19: 211-219 (2008)

Defending against oxidative stress induced by smoking and drinking

52% decrease!

Even if the same amount of β-cryptoxanthin is consumed, the serum concentration of β-cryptoxanthin would be extremely lower in alcohol drinkers among current smokers compared with non-drinkers among non-smokers.

Conclusion

High Serum β-cryptoxanthin associated with the lower risk for...

- Alcohol- and Diabetes-related Liver dysfunction
- Osteoporosis in post-menopausal female
- Insulin Resistance
- Arteriosclerosis
- Metabolic syndrome in current smokers
- Oxidative stress in smokers among regular alcohol drinkers

Further cohort and intervention studies, and mechanism studies will be required.

